Z Bheudek

Domg Business Programming

Automatizacion del Software

Bheudek.com

http://www.bheudek.com/

£ Bheudek

o =) 1ol Lo J TSSO P PR PP PPRPPPOPRRRPO 2
2. Introduccidn - Automatizacion del SOftWaArecooeeieeiiiiiiiee e 3
3. ¢Por Qué Generacion de COAIZO?uiiiiiiiei ittt ecte e e e tre e e e e are e e e e bee e e e eateeeeeanes 4
4. Buenas Practicas en la Generacion de COIZ0uuiiviiiiiiiiiiiiieciiee et saaee e 5
5. 10 Ventajas de la Generacion de COIZ0ccuvvuiiiiiiiiiiiiiiiiie ettt e st e e e s sveee e 7
LT D] IS NN 8
7. LangUAgE WOTKDECRcoc et et e et e e et e e e e b e e e e e nraeeaeas 10
8. Representacién del Conocimiento y Automatizacidn de Softwarecccccoveeeecveeccciiee e, 12
o B DI TY =T o o To Lol ft o [l =T oV TR 14
10. Frameworks: la Media Naranja de la Generacion de COdig0.......ccvvvrreriiiiiriiiiiiicieee e 16
11. Automatizacion: Proceso COMPIELO.......uuiiiiciiiiiiiiiiee ettt e e e e e e saeee e eanee 18
APPENDIX I = GLOSARIO ... e e e e e e e e e e e e e e e e e e eens 20
APPENDIX Il = APLICACIONES WEB DE ESCRITORIO......ccctiiiiiiiiiieieesiee sttt 22
APPENDIX Il = PRIMER PRODUCTO: BHEUDEK FINANCEcuiiiiiieeeieeiieeeee e eeiirecee e 24
APPENDIX IV — Beneficios de la Automatizacidon del Software en el FinTech........ccccooveeneeniennen. 28

£ Bheudek

1 Prefacio

Este documento es una compilacion de los diferentes articulos publicados en el blog de

la pagina web. http://bheudek.com/blog/

A través de estos articulos hemos intentado explicar la tecnologia desde un punto de

vista académico y el modo en que la hemos implementado en Bheudek.

Para cualquier pregunta o informacion puedes contactarnos en info@bheudek.com.

http://bheudek.com/blog/
mailto:info@bheudek.com

£ Bheudek

2. Introduccion - Automatizacion del Software

La automatizacion del desarrollo de software, como todo proceso de automatizacion,
consiste en delegar a la maquina algunas de las tareas que implica este proceso
productivo. El objetivo es conseguir una metodologia de desarrollo mas rapida, y

por tanto con menos costes, asi como una mayor calidad en el producto final.

La automatizacion en el SW ha sido una meta perseguida con anterioridad aunque no
con mucho éxito. Estandares de disefio tipo UML o herramientas de tipo

CASE (Computer Aided Software Engineering) no han conseguido los frutos
esperados debido a que intentan dar una solucion genérica (de “propdsito general”)

al conjunto de problemas a los que el SW intenta dar respuesta.

Por el contrario, los nuevos métodos de automatizacion ofrecen la posibilidad de
disefar, de forma simple y rapida, lenguajes que se adapten y puedan describir
cada problema particular. Es este enfoque especifico, y no de propésito general, el

que permite lograr casos de éxito en la automatizacioén del desarrollo de SW.

La automatizacion se asocia principalmente a la generacion de cddigo porque al finy al
cabo, el cadigo fuente, es el resultado del proceso productivo, pero no conviene olvidar
gue unavez que se utilizan estas técnicas, la programacion pasa de ser una mera
declaracion funcional a una verdadera representacion del conocimiento, a partir de
lo cual se pueden aplicar diversas disciplinas como la semantica o el razonamiento

automatizado.

Podemos concluir esta introduccion diciendo que a lo largo de la historia el SW a
optimizado muchos procesos productivos, es el momento de que optimice el suyo

propio.

£ Bheudek

3. (Por Qué Generacion de Codigo?

La generacion de codigo no es un nuevo estilo o técnica, es el camino seguido por los
lenguajes de programacion para hacer frente a la complejidad, desde la codificacién
en binario hasta la primera, segunda y demas generaciones de lenguajes. Es lo que los

compiladores han estado haciendo desde el inicio.

El tema clave aqui es “hacer frente a la complejidad”. Mientras mas complejo sea el
problema mas abstracto tiene que ser la forma de pensar para resolverlo. En otras
palabras, es necesario elevar el nivel de abstraccion. Y esta regla se aplica igualmente
a las herramientas que se utilizan para resolver el problema: los lenguajes de

programacion.

Por lo tanto, podemos afirmar que “elevar el nivel de abstraccion es el objetivo

perseguido en la evolucion de los lenguajes de programacion”.

Los lenguajes comunes que se utilizan hoy en dia para resolver los problemas (Java, C
#, C + + , Delphi ...), se conocen como “lenguajes de propésito general” (GPL en inglés
), Y aqui esta el problema: “propésito general”, que significa que pueden resolver “todos”
los problemas, pero desde una perspectiva global. Pueden resolver desde un nivel de
abstraccion lo suficientemente amplio como para llegar a la solucion, pero no tan alto
como lo que necesitariamos en cada problema particular.Existe una brecha entre el
nivel de abstraccién que utilizamos para lidiar con el problemay el nivel de

abstraccién que utilizamos para resolverlo a través de GPLs.
¢ Coémo podemos cubrir esa brecha? Obviamente, con la generacion de cdédigo.

Como conclusién, para abordar adecuadamente un problema tenemos que encontrar un
lenguaje particular para definir la solucién en el nivel de abstraccién que cada problema
requiere. Con el fin de hacer que la solucion sea computable, tenemos que generar

cadigo, por lo general en el nivel inferior mas cercano: el de GPL.

Esos lenguajes particulares se conocen como “lenguajes especificos de dominio” (DSL

en inglés), pero este tema se abordara en otro post.

Como conclusién, decir que este enfoque no es solo aplicable a problemas de negocio sino
también a la resolucion de problemas técnicos. Por ejemplo, los nuevos retos que ofrece la
programacion de aplicativos web de escritorio requieren un enfoque mas abstracto que integre

todas las tecnologias: HTML, CSS, JavaScrpit, AJAX y otros.

£ Bheudek

4. Buenas Practicas en la Generacion de Caodigo

El error mas comun cuando generamos cédigo es verlo como una caja negra, pensando
que lo importante es “lo que hace” y no “cémo lo hace”. Esto es un error. Como
siempre, la calidad importa.

Estas son algunas de las caracteristicas que un buen cédigo generado deberia tener:

e Independiente: el cddigo manual y el generado deben estar en archivos
diferentes, de lo contrario se corre el riesgo de perder el primero en el caso de
gue tengamos que volver a generar el cédigo (y sucederd).

e Inmutable: no se debe cambiar, por dos razones: es peligroso, por ser
desconocido, y por la misma razon que en el caso anterior.

e Legible: eso significa: nombres de variables y funciones significativos,
comentarios, sangria, organizados en carpetas, archivos, etc. El codigo generado
debe estar presentable para recibir la visita de los desarrolladores: para saber
como funcionay ¢ por qué no?, para aprender de él. Debemos generar un
codigo del que sentirnos orgullosos.

o Extensible: por diferentes razones es posible que tenga que implementar
manualmente algunas funcionalidades, por lo que el cédigo generado debe dejar
algunas puertas abiertas. La mejor manera es disefiar el cédigo generado
como un Framework, donde el codigo manual puede extender sélo algunas
funcionalidades permitidas y en un entorno seguro.

o Estructurada: elevar el nivel de abstraccién requiere un buen conocimiento del
campo que se esté tratando. Un cddigo mal estructurado puede ser un sintoma de
que ese campo no esta completamente bajo control. Una buena generacién de
codigo requiere un buen arguitecto.

e Robusto: el codigo generado puede fallar, por supuesto. El control de errores, la
gestién de excepciones, la validacion de las entradas, validaciones internas, etc
deben ir siempre incluidas en el codigo. Este tipo de politicas de seguridad se
pueden implementar facilmente en la generacion de cédigo y debe ser una de las
razones de su calidad.

o Potente: una vez dicho lo anterior, deberiamos ver la generacion de cédigo como
una forma de escribir un codigo més potente, eso significa pensar en estrategias,
en el codigo generado, que nunca usariamos si lo hiciéramos a mano (por lo

general por razones de mantenimiento).

£Bheudek

En resumen, las buenas précticas en la generacion de c6digo son una mezcla de

las buenas practicas tradicionales y una forma mas amplia de pensar.

£ Bheudek

5. 10 Ventajas de la Generacion de Codigo

Vayamos al grano. He aqui la lista:

o Calidad SW: En todos los aspectos: rendimiento, fiabilidad, seguridad, etc.

e Estandarizacion: no sélo en el cédigo fuente: en la interfaz de usuario, en las
estructuras de base de datos, etc.

e Centralizacion: politicas globales tales como el manejo de errores, la gestion de
excepciones, el formato de visualizacion de datos, las validaciones de datos,
comprobar los permisos, etc. estan centralizados en el generador. Este tipo de
politicas son también conocidos como funcionalidades transversales y es un tema
abordado por la Programacién Orientada a Aspectos (AOP en inglés) en la
programacion tradicional. La centralizacion evita este problema.

e Refactorizacién: relacionado con el beneficio anterior, la refactorizacién de
cadigo es facil y segura.

e Productividad: Menor coste y menor tiempo de lanzamiento al
mercado (entre versiones).

o Habilidades Analiticas: la generacion de cédigo requiere un andlisis mas
profundo del dominio antes de implementar la solucién a través del generador.

o Habilidades de Disefio: requiere un buen arquitecto, con una visiébn mas amplia.

o Crecimiento Sano: previene la degradacion de la arquitectura.

e Integracion de Nuevos Miembros: la cultura o las normas de desarrollo son
menores cuando se trabaja con generacion de cédigo.

e Nivel de abstraccidn: la programacién a un nivel mas abstracto, ademas de facil
de entender (es mas intencional), abre la puerta a nuevas posibilidades, tales
como: generacion de pruebas unitarias, auto-documentacion, carga automatica de

datos, semantica, racionamiento automatico, etc.

La generacion de cédigo no es facil, la implementacion de un generador requiere de
tiempo y esfuerzo, y mas adn si se trata de un Language Workbench, pero, sin duda,

los beneficios son enormes.

£ Bheudek

6. DSLs

Los lenguajes especificos de dominio (Domain-Specific Languages — DSLs) son
lenguajes de programacion disefiados para definir, de una manera mas precisay

expresiva, areas particulares, bien sean técnicas o de negocio.

Se denominan asi en contraposicién a los lenguajes de propdsito general (General
Purpose Languages — GPLs — Java, C#, C++, etc), ofreciendo un enfoque menos amplio
pero mas preciso, es decir, su objetivo es cubrir tnicamente el &rea 0 dominio para
el que se disefian pero hacerlo con las estructuras gramaticales y/o abstracciones
gréficas que mejor le definen.

Para entender estos lenguajes vamos a verlos desde dos puntos de vista: como una

evolucién a partir de la generacion de cédigo y como una evolucion desde los GPLs.
DSLs desde la generacion de coédigo

Existen diferentes formas, mas o menos sofisticadas, para generar c6digo: macros,
datos estructurados en tablas, generacion dindmica, parseo de estructuras simples,
modelados tipo CASE, etc, pero siempre que hablemos de un nivel elevado hablaremos
de lenguajes (de tipo texto o gréfico), donde se define de manera formal las estructuras

linglisticas, su representacion y su interpretacion.

De este modo, entendemos que los DSLs son la via mas sofisticada en la

generacién de cédigo.
DSLs desde los GPLs

Los GPLs son potentes porque permiten definir todos los problemas (Turing completo)
pero en muchos casos son expresivamente pobres debido al salto entre la definicion
del problema (mundo real) y su solucién (cédigo fuente). Esto hace muy complicada
la programacion y el mantenimiento porque se hace dificil entender lo que se pretende
solucionar. Pongamos por ejemplo la definicién de una interfaz de usuario web y su

representacion en HTML.: el salto expresivo es enorme.
En base a esta necesidad surgen los DSLs.
Caracteristicas y ventajas de los DSLs

e Mayor nivel de abstraccion. Definen conceptos mas complejos, mas abstractos

y por tanto mas expresivos.

£ Bheudek

e Tienen menos grados de libertad. Normalmente no son Turing completos.
Permiten definir el dominio, nada mas que el dominio y con las reglas que rigen el
dominio, lo cual les dota de una enorme potencia (en ese dominio, claro).

e Aumentan la productividad ya que permiten programar de una manera mas
rapida y eficiente.

e Mejoran la calidad del software. Abstraen de la complejidad técnica,
generalmente resuelta por el generador de codigo, evitando errores.

e Soporte IDE (entorno de desarrollo integrado). Validaciones, comprobacion de
tipos, autocompletar, etc. Esto es una gran diferencia respecto a la definicion del
dominio mediante APIs o Frameworks.

e Independientes de la plataforma.

e En general todos las ventajas de la generacién de cédigo.

Los DSLs son comunes en el mundo real, a lo largo de la historia han sido creados en
matematicas, ciencia, medicina... es el momento de usarlos en el desarrollo de

software.

£ Bheudek

7. Language Workbech

En anteriores publicaciones vimos lo que son los DSLs y por qué son necesarios y Utiles
en el desarrollo de software. Una vez que decidimos apoyarnos en ellos, nos
encontramos ante la necesidad de una herramienta que nos permitan disefiarlos y

utilizarlos. Esta herramienta se denomina técnicamente Language Workbench (LW).

Un LW esta formado por dos partes fundamentales:

o Disefio del lenguaje.
e Uso del lenguaje. Programacion.

Es posible que en el futuro la herramienta se divida en dos, de tal manera que, dentro o
fuera de una organizacion, existiran dos roles perfectamente diferenciados: quienes

disefien el lenguaje y quienes se encarguen de utilizarlo, de programar en él.
Disefio del lenguaje

Un LW debe ser capaz de proveer las utilidades para definir las diferentes partes que

forman el lenguaje:

e Sintaxis abstracta. La estructura gramatical/conceptual que define el lenguaje.
Puede ser entendido también como el meta-modelo.

e Sintaxis concreta. La representacién o representaciones visuales de dichos
conceptos. Pueden ser representaciones en formato texto y/o grafico. Para
entendernos, es la definicion de la interfaz visual con la que trabajara el
programador.

e Semantica estatica. Define aquellas restricciones o reglas que el lenguaje debe
cumplir (aparte de ser sintacticamente correcto).

e Semantica dinamica. Seria sobre todo la traduccién a lenguajes tradicionales
aunque, como mencionaremos luego, aqui se encuentra el mayor potencial de

esta metodologia de desarrollo.

Uso del lenguaje

Una vez definidos los puntos anteriores, la herramienta es capaz de interpretarlos y
proveernos de un entorno de desarrollo (IDE). Segun sea mas o menos sofisticado, a
parte de la edicidn, nos podra proveer de utilidades como: autocompletar, validaciones

estaticas, resaltar elementos sintacticos, mostrar diferentes vistas e incluso debug.

-10-

£ Bheudek

A parte de las caracteristicas anteriores, este entorno nos permitira generar codigo e

incluso podra dotarnos de un proceso de building para obtener el aplicativo final.
Potencial futuro

Todo lo comentado hasta ahora nos permite tener un proceso de desarrollo analogo al
tradicional pero con las ventajas que ofrecen los DSLs y la generacion de cédigo, lo cual
es un enorme avance en el que se apoyan los defensores e investigadores de esta

metodologia.

Estando de acuerdo en lo anterior, para nosotros el verdadero potencial, aun por
descubrir, es el hecho de que la programacion deja de ser una mera declaracion
funcional y pasa a ser una representacién del conocimiento. Una vez que definimos
los conceptos y sus reglas, la semantica puede ser capaz de ofrecernos muchos mas

servicios que la simple generacion de cédigo.

-11-

£ Bheudek

8. Representacion del Conocimiento y Automatizacion de
Software

La representacion del conocimiento es una disciplina que persigue la representacion
de lainformacién del mundo real de una manera que pueda ser interpretada por

las maquinas para resolver, mediante inferencia, problemas complejos.

Tradicionalmente ha sido una disciplina de la inteligencia artificial y Gltimamente ha
adquirido gran relevancia por su utilizacion en el &mbito de la semantica. El

proyecto de la Web Semantica, liderado por la W3C, es un claro ejemplo de ello.

Aungue existen muchos enfoques para la representacion del conocimiento,
comunmente todos persiguen: definir los conceptos, las relaciones y las reglas que
definen lainformacion. Mediante los diferentes conceptos podemos clasificar la
informacién y mediante las relaciones y reglas podemos inferir (razonar) sobre ella.
Por lo tanto, en vez de tener informacion “plana” tendremos ademas una meta-

informacién que nos permitiria procesarla.
Desde la perspectiva de los lenguajes

En anteriores publicaciones vimos como los Language Workbenches definen los
lenguajes mediante las sintaxis abstractay concretay las semanticas estaticas y
dinamicas. Si nos damos cuenta esa definicion seria la meta-informacién que hace
gue un programa sea una representacion del conocimiento y que, por tanto,

podemos utilizar todo el potencial que esta disciplina nos aporta.

Se suele pensar en los Language Workbenches como generadores de cddigo pero,
enfocados desde el punto de vista de la representacion del conocimiento y de la

semantica, pueden ofrecernos muchos més servicios. Enumeramos algunos:

e Generar baterias de pruebas.

e Generar cargas iniciales de datos. Relleno de estructuras de bbdd para pruebas
de rendimiento.

e Auto-documentacion.

e Auto-validacion.

e Analisis estadisticos de los datos y de los programas.

e Inferir comportamiento de los usuarios, clientes, etc.

e Facilitar laimportacion y exportaciéon de datos. Por ejemplo XBRL: lenguaje de

presentacion de informes de negocio extensible.

-12 -

http://www.w3.org/standards/semanticweb/
http://www.w3.org/
http://www.xbrl.org/

£ Bheudek

e Enlazar con ontologias estandar. Por ejemplo FIBO: ontologia del negocio

financiero.

o Facilitar la integracion con otros sistemas.

e Razonamiento automéatico (machine reasoning).

Conclusion

'w\l'r‘ott-fo.’«'-o«:—T

k{\oU\?J’e :

[

T

— | Larepresentacion del conocimiento

esta siendo un area de investigacion
enfocada sobre todo en el tratamiento

de los datos: estructurar la informacion

de los buscadores, analisis semanticos

aplicados al Big Data, definiciones de

ontologias asociadas a diferentes negocios, etc.

Construir metodologias de desarrollo que doten a los programas de esas

capacidades es una puerta hacia el futuro con potenciales aun por descubrir.

-13-

http://www.omg.org/hot-topics/fibo.htm

£ Bheudek

9. Disenadores de Lenguajes

Una vez que disponemos de una herramienta para disefiar lenguajes de forma 4gil,

viene la tarea mas dificil: disefarlos.

El disefio de un buen lenguaje es la parte principal del proceso ya que sera la
herramienta de los desarrolladores y lo que va a albergar la inteligencia semantica

del sistema.

Asimismo, dado que los conceptos que estructuran el lenguaje forman en si mismo el
modelo, antes de disefiarlo es necesario conocer bien el dominio que se quiere

modelar.
Caracteristicas de un buen lenguaje

o Alto nivel de abstraccion. Mientras mayor sea el nivel, mas potente sera el
lenguaje y mayor carga semantica tendran sus conceptos. Asimismo, un alto
nivel de abstraccién denota un alto conocimiento del dominio que se modela.

e Simple. Debe ser facil de utilizar y de leer. Un lenguaje simple suele ser
sindbnimo de un alto nivel de abstraccion.

o Diferentes niveles de complejidad. A la vez que debe ser simple, también debe
permitir vias para profundizar en el detalle por parte de aquellos que lo necesiten.

o Estética agradable.

e Seméanticamente potente. Para que un lenguaje sea productivo simplemente es
necesario dotar a los conceptos de su representacion grafica y su traducciéon a
lenguajes tradicionales, pero si queremos que realmente sea completo, debemos
dotar a los conceptos de mas interpretaciones semanticas: auto documentacion,

auto validacion, reglas de inferencia, etc.
Requisitos de un buen disefiador

A partir de las caracteristicas de un buen lenguaje podemos inducir los requisitos:

e Orientacion a negocio. Conocer bien el dominio para disefar el lenguaje
requiere un alto interés por conocer todos los procesos que lo rigen.

e Capacidad de abstraccién. Conocido el dominio, se requiere una capacidad
analitica que permita identificar, con el mayor nivel de abstraccion posible, su mas

pura esencia.

-14 -

£ Bheudek

o Enfoque haciala semantica. El lenguaje ha de disefiarse con el objetivo de
dotarle de una alta capacidad de representar el conocimiento.
e Cualidades enfocadas a la simpleza y la estética.

Conclusion

Este nuevo paradigma de desarrollo requiere un perfil particular para disefiar los
lenguajes, donde no solo son importantes las antiguas cualidades analiticas sino que

se han de afadir cualidades de usabilidad y de representacion del conocimiento.

Inicialmente puede parecer complejo pero al fin y al cabo forma parte de la evolucidn
de latecnologia, donde los perfiles que mas aportan son aquellos que tienen mayor

capacidad de abstraccion.

-15-

£ Bheudek

10. Frameworks: la Media Naranja de la Generacion de
Cadigo

Podemos definir un Framework (FW) como una estructura software con
funcionalidades genéricas las cuales pueden ser adaptadas o enriquecidas para

obtener un aplicativo final.

Comunmente pueden ser confundidos con las librerias, pero se trata de un enfoque

totalmente diferente. He aqui las principales caracteristicas que definen esta diferencia:

e Lainversion de control. El flujo de control lo define el FW y no el aplicativo que
usa sus servicios. Esto también es conocido como el principio de Hollywood:
“no nos llames, nosotros te llamaremos”.

o Extensibilidad. Algunas funcionalidades del FW no estan “cerradas” como
sucede en las librerias, al contrario estan disefiadas para ser particularizadas
segun el problema particular que deban resolver.

e Comportamiento predeterminado. los FWs poseen un comportamiento global
predeterminado, comportamiento que define el flujo de control. Como se ha visto
antes, la extension es lo que permite adaptar el comportamiento global al

problema particular que cada aplicativo requiera.

Los frameworks son la base de las arquitecturas plug-in y de los sistemas enfocados
a ecosistemas de desarrollo (facebook, twitter, amazon...), pero sobretodo son la

arquitectura perfecta para hacer de base al cddigo generado.

Técnicamente, dependiendo del lenguaje de programacion que usemos, habréa varias
formas de implementarlo. En lenguajes que lo permitan lo mejor es apoyarse en clases
abstractas, clases parciales, delegados y tipos genéricos. En caso contrario se
pueden usar otras estrategias como: intérpretes, funciones intermedias, tipo patrén

visitor, que resuelvan la llamada y otros.
Ventajas en la generacion de coédigo

Estas son las caracteristicas que aconsejan su uso:

o Extensible. Permiten realizar el trabajo en dos partes, lo cual facilita la definicién
del generador de cédigo.
e Estructurado. Disefiar por un lado la parte genérica y en el generador la

particular, permite tener una arquitectura mejor estructurada.
-16 -

£ Bheudek

e Seguridad. Permite tener fisicamente separados el cédigo manual y el cédigo
generado, lo cual evita perdidas de codigo.

o Reutilizable. Una vez definido un FW podemos utilizarle en diferentes proyectos,
facilitando nuevamente el desarrollo del generador.

o Legibilidad. La separacién de lo genérico y lo particular facilita el entendimiento

del codigo.

Conclusion

Cuando se aborda la generacion de cédigo se suele pensar que se va a generar el
sistema al 100%. Una vez que se profundiza en ello se ve que es complejo ademas de

ser un error de disefio y una distribucion de trabajo desequilibrada.

Para conseguir un buen disefio arquitecténico y una buena distribucién del trabajo los
frameworks se muestran como la media naranja ideal para nuestro sistemas

generados.

Por ultimo, es aconsejable que el cddigo generado tenga también una estructura
de framework, esto nos permite poder implementar aquellas particularidades que no
convenga automatizar y a su vez permite que nuestros sistemas puedan ser extendidos

por un ecosistema de desarrolladores

-17 -

£ Bheudek

11. Automatizacion: Proceso Completo

A lo largo de diferentes articulos hemos ido viendo el conjunto de elementos que forman

la metodologia, compilamos en éste todo el proceso.
Generacion de coédigo

A través del Language Workbench, una vez definidos los lenguajes (DSLs), realizamos
el proceso de programacion. Y a medida que vayamos avanzando iremos generando

codigo para compilarlo y ver el resultado en el aplicativo final.

Siempre que utilicemos lenguajes que soportan clases parciales, clases abstractas,
tipos genéricos, delegados, etc., podemos generar el cédigo sin peligro ya que lo
haremos en ficheros separados, sin riesgo de pisar codigo manual o de FWs. En caso

contrario deberemos utilizar otro tipo de estrategias para evitar que esto ocurra.
Fusion con Frameworks

Como en el caso anterior, dependiendo de los lenguajes finales que utilicemos, la fusion
serd mas o menos simple. En el caso de lenguajes que soporten FWs (clases
abstractas, parciales, etc) no se requiere tal fusién porque lo soluciona la propia

sintaxis del lenguaje.

En otro tipo de lenguajes habra que ajustar alguna funcionalidad o algun fichero

de configuracion, lo cual podra ser también automatizado por el propio LW.
Extensiones manuales

En la mayoria de los casos existiran ciertas funcionalidades que no conviene
automatizar, de lo contrario complicariamos nuestros DSLs perdiendo, por tanto, parte

de su potencia.

Lo ideal seria definir, en la propia herramienta, esos lenguajes de extension teniendo
integrado todo el desarrollo en la herramienta. En caso contrario podremos programar

estas extensiones en el propio lenguaje final en el que generamos el cédigo.

-18-

£Bheudek

Si afladimos las extensiones en el lenguaje final, nuevamente seré interesante
buscar un enfoque de FWs, esto es, hacer que el propio cédigo generado tenga una
estructura extensible y asi podamos tener las partes manuales en ficheros diferentes,
evitando el riesgo de pérdida o substitucion.

I Browser

Dispatcher and Core
Page FW Generated| Data | DB
; , ; , : DS Source
; Ge:nerat?d Pagles I Y ik FW Core
i Mahual Eixtensi:bns E “““““ DB

Componentes del servidor web
Building

Una vez que tenemos todo el cédigo: FWs, generado, extensiones manuales, ficheros
de configuracién y otros, un proceso automatico se encargara de su fusion, si fuera

necesario, de su compilacién y de su publicacién.

Dependiendo del sistema operativo tendremos diferentes herramientas para hacerlo,
aungue lo mas comun en todos ellos es usar ficheros de instrucciones batch que

realiza todos los pasos del proceso.

Para concluir indicar que hemos detallado el proceso tal y como se encuentra en este
momento, pero cabe resaltar que es una tecnologia en constante evolucién y que
persigue integrar todo el proceso en el propio LW: lenguajes, debug, fusion,
building, etc.

-19-

http://bheudek.files.wordpress.com/2013/06/webfw3.png

£ Bheudek

APPENDIX I - GLOSARIO

AOP

Aspect-oriented programming. La programacién orientada a aspectos es un
paradigma de programacién que permite la separacion de aspectos trasversales.
Aspectos diferentes, tales como seguridad, log contable, avisos, etc. pueden ser
definidos en areas diferentes, obteniéndose el comportamiento final del sistema

mediante a través de un proceso de tejido.

Dominio

O
wn
LA

MDA

Un dominio es un area, de negocio en nuestro caso, en el cual reside un

conocimiento particular y una terminologia especifica para definirlo.

Domain Specific Language. Un lenguaje especifico de dominio es un lenguaje de
programacion diseflado para representar los conceptos de un dominio dado.
Puede ser tanto grafico como texto.

Framework. Un framework es una plataforma software reutilizable para
desarrollar aplicaciones. Se trata de una abstraccion donde sus funcionalidades
genéricas pueden ser extendidas de manera selectiva para conseguir un

aplicacion software especifica.

Feature Model. Modelo para representar las partes comunes y opcionales que
puede haber en una linea de produccion. Es utilizado en PLE.

Language Workbench. Herramienta que permite la definicién y uso de lenguajes
formales: sintaxis abstracta y concreta y semantica estética y dinamica. Se
podria considerar como una herramienta para definir el lenguaje, el compilador y

el IDE de un determinado dominio.

-20-

£ Bheudek

Model Driven Architecture. Estandar OMG para el desarrollo de software basado

en modelos. Se puede considerar como un caso particular de MDSD.

MDSD

Model-driven Software Development. Se trata de un paaradigma de

programacion que basa el desarrollo de software a nivel de modelos.
Meta-modelo

Reglas, construcciones, relaciones, etc. que definen los modelos que pueden ser

construidos en un dominio determinado.

-
—
m

Product Line Engineering. Disciplina para la creacion de software a través de

lineas de produccién de software (SPL).

(9]
)
-

Software Product Lines. Metodologia de desarrollo enfocada en la produccion de
software tal y como se hace en la produccion de otros bienes: compartiendo los

procesos comunes Yy aislando los particulares.

-21-

£ Bheudek

APPENDIX II - APLICACIONES WEB DE ESCRITORIO

Mas alla de la publicidad o la identidad digital, las empresas cada vez mas ven en la
web la via para mejorar su productividad y servicios: objetivos como descentralizar la
gestién (back offices) o dotar a los clientes de una actividad directa online son

ejemplos de ello.

Aunqgue la web no fue disefiada en origen para una interaccion dindmica y
bidireccional, la aparicién de nuevas las tecnologias y la mejora en los
navegadores, nos permiten disefiar aplicaciones cada vez mas cercanas a las

tradicionales aplicaciones de escritorio.

Estas aplicaciones web de escritorio son diferentes a las paginas web y a los
aplicaciones web (e-commerce, por ejemplo), porque se enfocan a usuarios que
necesitan una interacciéon continua, prolongaday agil. Pongamos como ejemplo
cualquier usuario de call center: atencion al cliente, servicio técnico, gestion de
recobros, etc.

Requisitos de una aplicacion web de escritorio

e Teclado. Es indispensable que la aplicacion pueda ser gobernada por el teclado y
no solamente por el ratén. Tabulador, intro, flechas, etc.

e Velocidad. No solo por motivos de comodidad sino de productividad.

e Seguridad. Los datos con los que tratan estas aplicaciones son muy sensibles.

e Sin efecto parpadeo. La carga de contenido ha de ser parcial y dinamica, el
refresco continuo de toda la pagina produce un efecto incobmodo e insano.

o Estética agradable y estandar. Debe ser limpia y nunca recargada.

Consejos para conseguirlo

o Patréon SPA (Single Page Application). Se trata de un patrén de pagina web Unica
donde los contenidos se van cargando dindmicamente. Permite politicas como
carga inicial de ficheros (js, css, imagenes, etc), control de sesiébn compartido,
mayor procesamiento en el cliente, etc.

e Interfaz estandar en todo el aplicativo. Las pantallas, los botones, las pestafas,
los grids de datos y demas controles han de tener un aspecto y operativa comin a

lo largo del aplicativo.

-22-

£Bheudek

e Framework JavaScrtipt. Necesario para estandarizar la interfaz y dotarla de los
servicios para gestionar los controles y ventanas. Por motivos de seguridad y
adaptabilidad se aconseja que sea desarrollo propio y encapsulado en un unico
objeto.

o Control de eventos de teclado. El framework debe implementarlos y asociarlos a
los controles.

e AJAX. La via para el dinamismo.

e Minimizar uso de lared. El trasiego de datos debe ser el minimo, aunque eso
suponga mayor procesamiento en el lado del cliente. Estandares de intercambio
como JSON son aconsejables.

e Pantallas modales. Mejoran la experiencia de usuario y el dinamismo del
aplicativo.

e Uso de imagenes sprites. Permiten cargar todas las imagenes de la aplicacién al

principio.

Un desarrollo automatizado de la interfaz de usuario apoyada en un framework js

potente es el mejor camino para cumplir los objetivos anteriores.

Conclusion

Cuando hablamos de apps de
escritorio hablamos de aplicaciones

CON unos requisitos muy exigentes

ya que son la herramienta de
trabajo en la que los usuarios

pasaran gran parte de su tiempo.

Podran seguir apareciendo nuevos

dispositivos y nuevas maneras de
interactuar con los sistemas, pero cuando hablamos de interaccion, requisitos
tradicionales como el teclado, la velocidad, la seguridad y la ergonomia se hacen

imprescindibles.

-23-

https://esbheudek.files.wordpress.com/2014/07/modal.png

£ Bheudek

Dheirg Bucinecs Programming

APPENDIX III - PRIMER PRODUCTO: BHEUDEK FINANCE

Con el fin de acudir al mercado y poner a prueba nuestras herramientas, hemos

desarrollado nuestro primer producto: un servicer financiero.

Basandonos en nuestra experiencia en proyectos similares podemos afirmar que, con

nuestras herramientas, jHemos reducido el tiempo total del proyecto en un 75%!,

mejorando no solo el tiempo de desarrollo sino también el de test y refactorizacion.

W
& = C fi |[)bheudekcom

Configuracion

LD

£ Bheudek

Doing Business Programming

Menu principal.

Caracteristicas Funcionales

Como servicer financiero, estas son las funcionalidades principales de la aplicacion:

e Migracién de carteras.

e Gestion de clientes.

o Gestion de entidades, familias de productos y acuerdos.

¢ Ciclo de vida complete del préstamo: remesas, impagos, pagos parciales,

recobros, fallido, etc.

o Gestation de recobros: amistoso, judicial y agencias externas.

¢ Mayor.
e Contabilidad.

e Gestidn de usuarios, roles, permisos y ambitos.

e Configuracion: bancos, juzgados, simulacion de préstamos, etc.

De manera mas general queremaos destacar estas caracteristicas:

-24-

£ Bheudek

Dol Bucinecs Programming

Multi-Ambito:similar a multi-compafiia pero en diferentes niveles. La parametrizacion y

la vision del usuario se pueden encuadrar a grupos de carteras, de compaifias, de

inversores, etc.

«

[]

1 bheudekcom

Meni/Usuarios/Empleada

SIS rciot FabloCassano Allegr I

03/08/2013 16:00:33

Logn Idoms

Feant Espafiol

Datos de empleada

Nombre Primer ipellido
Fatio Cassann

Segundo Apelido
Alagn

Feh, Ultime Pwd eMail

Calipso £FC

TS T

8 Bheusek| Doing Busines: .

4

[v] =

Péagina de gestion de usuario: seleccion de &mbito.

Estanqueidad: cada cartera se comporta a lo largo de la aplicacion como un elemento

aislado, sin existir filtraciones de datos o de procesos entre ellas.

Rastreable: se puede seguir el curso de cada entrada de dinero en el sistema.

Integrado: toda la gestidn se integra en una Unica aplicacién y a su vez, procesos que

tradicionalmente eran independientes, han sido integrados en uno solo.

&

c#

8 Bheudek | Doing Busines: x

bheudek.com
"4
¥ Meni/Busqueda de Clientes/Producto Prestamo/Gestion de deuda "
JULIO CESAR OTERO JARVIS Sulfa Inc. 0,00€

Informacién Demografica

apelidos Nombee Estado ol Teltfono 1 Tektono2 Entidsd

, Casadofa 61671181 Sulfa lnc
Tipe Via via Nimer Auxiar ce. Cudad
calle Estiardo s 8.0 39614 RIOTURBIO
Referencia Estado Cubo Impagos Deuda Mora G Devol TOTAL Fecha ciiculo: (01042014 | B
00000087011 Actvo 2 2 7 2006 3600C_ 11334 = =
s e B @ a
001000674883 perdda €O s 338399 0006 0006 338399 cimiaress mages Carcl

s
principal nteres seguro Comapert G Devol Mora 118

267 3287 0,00¢ 0.00¢ 36.00¢ 2,006 s T s

GR
Fecha Hora Usuario Poxfecha Porkora FPromesa importe Recobros Contactado.
02/02/2004 23:21:32 kMDY impago Sin cambios
05/01/2014 03:51:07 INAOL 09/01/2014
0802014 232044 IR
3012013 100158 IR 3071172013
2112013 2449 AL /112013 o o ot et e o Kpent
AN 003 KWL /A0 et sieom <a i oo sotet
26/11/2013 093428 PO1 26/11/2013
16/1/2013 091043 ISP0L 16/11/2013

Bz =

Proceso de recobros unificado: amistoso y judicial.

-25-

£ Bheudek

Dheirg Bucinecs Programming

Caracteristicas Técnicas

Se trata de aplicacién web HTML5 basada en el patrén SPA (Aplicacion de pagina
Unica), lo que significa: carga dinamica de paginas sin el efecto blinking. Esta potente
caracteristica se consigue gracias a la velocidad de procesamiento de peticiones que
ofrece el codigo generado.

Una de sus caracteristicas mas importantes es que puede ser considerada como una
Aplicacion Web de Escritorio. Este tipo de aplicaciones web son aplicaciones
tradicionales de escritorio pero con una interface web. Estas aplicaciones son diferentes
a las paginas web y a los aplicaciones web (e-commerce, por ejemplo), porque se
enfocan a usuarios que necesitan una interaccion continua, prolongada y agil.
Pongamos como ejemplo cualquier usuario de call center: atencion al cliente, servicio

técnico, gestion de recobros, etc.

Codigo Estado famita Entidad lechago Phato URbago mpote TR TAE
onsumo Sorotend /U012 48 OLOYZS1 14500006 S 605K
wrotend OOV0I3 408 OUI220% 14500000 6B 667H

Codgo Estado KhAdh SetePago Plaio URPago PpalPdte Nimp Pimimpago Uiimpago TR TAE
v L1 ONOI014 08 OLI20N6 MIL46SSE 1 CLOWI OO0 TI6M 140N

Ejemplo 1 Carga dindmica de la pagina
Estas son las caracteristicas principales de una Aplicacion Web de Escritorio:

e Teclado. Es indispensable que la aplicacién pueda ser gobernada por el teclado y
no solamente por el raton. Tabulador, intro, flechas, etc.

e Velocidad. No solo por motivos de comodidad sino de productividad.

e Seguridad. Los datos con los que tratan estas aplicaciones son muy sensibles.

e Sin efecto parpadeo. La carga de contenido ha de ser parcial y dindmica, el
refresco continuo de toda la pagina produce un efecto incobmodo e insano.

o Pantallas modales. Mejoran la experiencia de usuario y el dinamismo del
aplicativo.

o Estética agradable y estandar. Debe ser limpia y nunca recargada.

-26-

£ Bheudek

Dol Bucinecs Programming

8 Bheudek | Doing Busines:

« C fi [} bheudekcom Bl =

No Identificados

concepto importe aplcar
Princigal Pendiente 72660 57266,

™~

Comision Caneelacion 20,18€ 20,18 Mw Morosl Sorras
[enad e B2 o

FETEIFIN + | = oy
Datos Pago Cancelacion Cancalacion
=

Saldo Chente FechaValor Descripeion
1E1L36€| 25/08/2013 J

Ejemplo 2 — Ventana modal

Otra caracteristica fundamental de la aplicacién es la seguridad, la cual viene
soportada por tener un unico Framework JS y estar encapsulado en un Unico objeto y
por las politicas de seguridad del servidor: sesién de testigo dinamico, validacion de
peticiones, validacién de datos, permisos, etc. Este tipo de politicas globales que se
implementan a lo largo de toda la aplicaciéon se denominan cross-cutting concerns y son

resueltas y garantizadas por el c4digo generado.

-27 -

£ Bheudek

APPENDIX IV - Beneficios de 1a Automatizacion del
Software en el FinTech

El sector financiero se encuentra ante su mayor reto tecnologico: el
fendmeno FinTech. Afrontar esta cambio, que implica a muchas areas y
tecnologias, requiere un enfoque global para evitar el caos operativo y
tecnoldgico.

Ante este escenario, la automatizacion se presenta como la solucion
unificada que requiere el problema. Caracteristicas como la semanticay la
automatizacion de procesos ofrecen ventajas a los cambios que se
abordaran en las diferentes areas: servicios de negocio, servicios online y
gestion de datos.

El sector financiero se halla sumergido en un proceso de renovacion tecnolégica. Las
oportunidades que ofrecen las nuevas tecnologias y la irrupcion de nuevos
actores, muchos de ellos provenientes de otros sectores (Google, Amazon, Apple..),

han obligado al sector a mover ficha.

El fenbmeno FinTech esta planteando actuaciones en areas muy diversas y con
tecnologias muy diversas, lo cual nos lleva a un escenario complejo donde se hace
necesario que el problema sea abordado desde una perspectiva global, de lo

contrario se corre el riesgo de entrar en un caos operativo y tecnoldgico.

Ante esta situacién, las nuevas técnicas en la automatizacién del software se plantean

como la mejor via para afrontar este cambio.

La automatizaciéon del software eleva la solucidon técnica
al nivel conceptual en el que opera el negocio. Este punto
de vista mas elevado es el que permite dar un enfoque

mas global y unificado al reto que plantea el FinTech.

Desde una vision mas técnica, la automatizacion del software se apoya en la creacién
de lenguajes de programacion mas abstractos que permiten automatizar los detalles
técnicos y dotar al sistema de una mayor riqueza semantica. En ambitos técnicos, estos
lenguajes se denominan DSLs y las herramientas para gestionarlos Language
Workbench.

-28-

http://bheudek.es/2014/06/25/dsls/
http://bheudek.es/2014/06/30/language-workbench/
http://bheudek.es/2014/06/30/language-workbench/

£ Bheudek

Ventajas

1.Automatizacion de procesos.

Trabajar en un nivel méas abstracto permite automatizar procesos técnicos pero también
a procesos tradicionales de negocio. Motores de decision, ofertas basadas en riesgo,
prediccion de fallidos y deteccion del fraude son ejemplos de procesos que pueden

verse mejorados bajo la perspectiva de la automatizacion.

2.Semantica.

La nueva forma de definir los lenguajes de programacion, a partir de los conceptos que
los estructuran, abre las puertas a laRepresentacion del Conocimiento. Esta disciplina,
tradicionalmente de la inteligencia artificial, se aplica cada vez mas al tratamiento de
datos (visualizacion, busqueda, analisis, toma de decisiones ...) y en el futuro sera
fundamental en cualquier proceso de analisis y de interaccién, bien con clientes, bien
con otros sistemas. XBRL (lenguaje de presentacion de informes de negocio extensible)
y FIBO (ontologia del negocio financiero) son ejemplos de aplicacion de la semantica en

el sector financiaro.

3.Menor complejidad técnica.

Nuevamente, el mayor nivel de abstraccién de los lenguajes nos permite resolver, de
manera automatica, gran parte de los detalles técnicos que requieren las diferentes
soluciones. Conseguir automatizar esta complejidad redunda en la calidad, seguridad,

estandarizacién y otras caracteristicas del software.

4.Multi-plataforma.
Una vez que tenemos el dominio de los lenguajes de programacién, un mismo
desarrollo puede traducirse a multiples plataformas, sin necesidad de tener que llevar a

cabo un nuevo proyecto para cada nuevo dispositivo.

5.0rientacién a negocio.

Los lenguajes de programacién se hacen mas cercanos al negocio, lo cual permite a los
desarrolladores enfocarse en dar una solucion desde el punto de vista propiamente del
negocio y no desde una perspectiva técnica. A su vez esto derriba la barrera que ha

existido siempre entre las areas de desarrollo y el resto de areas de la empresa.

-29-

http://bheudek.es/2014/07/03/representacion-del-conocimiento/
http://www.xbrl.org/
http://www.omg.org/hot-topics/fibo.htm

£ Bheudek

Areas beneficiadas

El FinTech actia en multiples areas en las que la automatizacion puede aportar sus
ventajas. Las agrupamos en tres bloque principales: servicios de negocio, servicios

online y gestion de datos.

1.Servicios de negocio.
La demanda de nuevos servicios por parte del cliente y la busqueda de mejoras en la
productividad, est4 llevando al sector a actuar sobre sus estructuras mas tradicionales.

Los puntos en los que la automatizacién aporta ventajas son:

Descentralizacion. Para poder llevar a cabo la descentralizacion de servicios (call
centers, back office, etc), es necesario migrar hacia el entorno web, lo cual resulta
un reto importante porque los sistemas deben mantener las caracteristicas de
seguridad, velocidad y manejabilidad de las aplicaciones de escritorio
tradicionales. La automatizacién nos permite crear, de manera

eficiente, Aplicativos Web de Escritorio.

Gestién del portfolio. La automatizacion de procesos tradicionales nos permite
una gestiobn mas optimizada. Por otro lado, la semantica nos permite la gestion

unificada de portfolios heterogéneos y la integracion de portfolios externos.

Compliance. La semantica, junto con el uso de lenguajes orientados a negocio,
facilitan los procesos de andlisis y documentacion de auditoria. A su vez, la
automatizacién de procesos es la mejor via para solucionar problemas de

compliance.

Sistemas heredados (legacy). El mayor nivel de abstraccion de los lenguajes nos

permite disefiar, de manera simple, interfaces con los sistemas ya existentes.

2.Servicios online.

La aparicion de nuevos dispositivos, la mejora en las comunicaciones y la nueva cultura
digital han hecho que las entidades abran sus puertas para permitir una gestion mas
directa por parte de sus clientes. Nuevamente la automatizacion ofrece beneficios en

éste area:

Accesibilidad. La multi-plataforma permite multiplicar las vias de acceso de los

clientes a sus datos.

-30-

http://bheudek.es/2014/07/24/aplicativos-web-de-escritorio/

£ Bheudek

Promover la educacion financiera. La semantica dota a los sistemas de unas
capacidades de visualizacion y documentacion que facilitan su manejo y
entendimiento.

Gestién personal. Como resultado de las puntos anteriores, el cliente pasa a
tener una gestion mas personal de sus datos y sus activos. Como hemos dicho, la

semantica juega un papel fundamental en la interaccion con el cliente.

New Banking. Multi-plataforma, semantica y automatizacion de procesos
permiten nuevas lineas de negocio como: ofertas personalizadas, plataformas de

pago, cripto-monedas, analisis proactivos de riesgo y otros.

3.Gestion de datos.
La interaccion mas directa con el cliente y los nuevos metodologias para procesar esa
informacion han revolucionado el tratamiento de los datos y las tradicionales técnicas de

CRM. En este ultimo apartado la automatizacion también ofrece ventajas:

Automatizacién del back office. La automatizacion del back office pasa por la
automatizacion de su workflow. Las posibilidades que ofrece la seméantica en el
disefio de motores de decisién mas “inteligentes”, junto con la automatizacién de

procesos, son lineas fundamentales para conseguir este obijetivo.

Reporting. En general el reporting cada vez mas tiende a la semantica, un
ejemplo de ello es XBRL.

Seguridad. La automatizacion de procesos permite un tratamiento mas seguro de
los datos.

Big Data. Podemos resumir, ya que este punto requeriria un articulo entero, que
la seméantica, la automatizacion de procesos y un mayor nivel de abstraccién nos
permiten, por un lado, manejar la variabilidad de los datos y por otro, mitigar los

riesgos que supone la desestructuracion asociada al Big Data .

-31-

£ Bheudek

Dol Bucinecs Programming

Gastidn
Personal

Educacion g 4 \ New Banking |

Financiera

Conclusion

Gestidn de
Portfalio

Descentralizar
Servicios

Accasibilidad

Seguridad

Sistemas

Heredados

El sector financiero se encuentra ante uno de los retos tecnolégicos mas grandes de

toda su historia, reto en el que se ven afectadas multiples areas y tecnologias.

La automatizacion del software aporta el enfoque general y unificado que requiere

este escenario, de lo contrario, las actuaciones individualizadas pueden llevar a las

comparfiias a un panorama tecnoldégico dificilmente gobernable.

-32-

http://esbheudek.files.wordpress.com/2014/07/esautfintech1.png
http://esbheudek.files.wordpress.com/2014/07/esautfintech1.png
http://esbheudek.files.wordpress.com/2014/07/esautfintech1.png

