

Automatización del Software

Bheudek.com

http://www.bheudek.com/

- 1 -

1 Prefacio.. 2

2. Introducción - Automatización del Software ... 3

3. ¿Por Qué Generación de Código? .. 4

4. Buenas Prácticas en la Generación de Código ... 5

5. 10 Ventajas de la Generación de Código ... 7

6. DSLs .. 8

7. Language Workbech ... 10

8. Representación del Conocimiento y Automatización de Software ... 12

9. Diseñadores de Lenguajes .. 14

10. Frameworks: la Media Naranja de la Generación de Código ... 16

11. Automatización: Proceso Completo ... 18

APPENDIX I – GLOSARIO ... 20

APPENDIX II – APLICACIONES WEB DE ESCRITORIO ... 22

APPENDIX III – PRIMER PRODUCTO: BHEUDEK FINANCE .. 24

APPENDIX IV – Beneficios de la Automatización del Software en el FinTech 28

- 2 -

1 Prefacio

Este documento es una compilación de los diferentes artículos publicados en el blog de

la página web. http://bheudek.com/blog/

A través de estos artículos hemos intentado explicar la tecnología desde un punto de

vista académico y el modo en que la hemos implementado en Bheudek.

Para cualquier pregunta o información puedes contactarnos en info@bheudek.com.

http://bheudek.com/blog/
mailto:info@bheudek.com

- 3 -

2. Introducción - Automatización del Software

La automatización del desarrollo de software, como todo proceso de automatización,

consiste en delegar a la máquina algunas de las tareas que implica este proceso

productivo. El objetivo es conseguir una metodología de desarrollo más rápida, y

por tanto con menos costes, así como una mayor calidad en el producto final.

La automatización en el SW ha sido una meta perseguida con anterioridad aunque no

con mucho éxito. Estándares de diseño tipo UML o herramientas de tipo

CASE (Computer Aided Software Engineering) no han conseguido los frutos

esperados debido a que intentan dar una solución genérica (de “propósito general”)

al conjunto de problemas a los que el SW intenta dar respuesta.

Por el contrario, los nuevos métodos de automatización ofrecen la posibilidad de

diseñar, de forma simple y rápida, lenguajes que se adapten y puedan describir

cada problema particular. Es este enfoque específico, y no de propósito general, el

que permite lograr casos de éxito en la automatización del desarrollo de SW.

La automatización se asocia principalmente a la generación de código porque al fin y al

cabo, el código fuente, es el resultado del proceso productivo, pero no conviene olvidar

que una vez que se utilizan estas técnicas, la programación pasa de ser una mera

declaración funcional a una verdadera representación del conocimiento, a partir de

lo cual se pueden aplicar diversas disciplinas como la semántica o el razonamiento

automatizado.

Podemos concluir esta introducción diciendo que a lo largo de la historia el SW a

optimizado muchos procesos productivos, es el momento de que optimice el suyo

propio.

- 4 -

3. ¿Por Qué Generación de Código?

La generación de código no es un nuevo estilo o técnica, es el camino seguido por los

lenguajes de programación para hacer frente a la complejidad, desde la codificación

en binario hasta la primera, segunda y demás generaciones de lenguajes. Es lo que los

compiladores han estado haciendo desde el inicio.

El tema clave aquí es “hacer frente a la complejidad”. Mientras más complejo sea el

problema más abstracto tiene que ser la forma de pensar para resolverlo. En otras

palabras, es necesario elevar el nivel de abstracción. Y esta regla se aplica igualmente

a las herramientas que se utilizan para resolver el problema: los lenguajes de

programación.

Por lo tanto, podemos afirmar que “elevar el nivel de abstracción es el objetivo

perseguido en la evolución de los lenguajes de programación”.

Los lenguajes comunes que se utilizan hoy en día para resolver los problemas (Java, C

#, C + + , Delphi …), se conocen como “lenguajes de propósito general” (GPL en inglés

), y aquí está el problema: “propósito general”, que significa que pueden resolver “todos”

los problemas, pero desde una perspectiva global. Pueden resolver desde un nivel de

abstracción lo suficientemente amplio como para llegar a la solución, pero no tan alto

como lo que necesitaríamos en cada problema particular.Existe una brecha entre el

nivel de abstracción que utilizamos para lidiar con el problema y el nivel de

abstracción que utilizamos para resolverlo a través de GPLs.

¿Cómo podemos cubrir esa brecha? Obviamente, con la generación de código.

Como conclusión, para abordar adecuadamente un problema tenemos que encontrar un

lenguaje particular para definir la solución en el nivel de abstracción que cada problema

requiere. Con el fin de hacer que la solución sea computable, tenemos que generar

código, por lo general en el nivel inferior más cercano: el de GPL.

Esos lenguajes particulares se conocen como “lenguajes específicos de dominio” (DSL

en inglés), pero este tema se abordará en otro post.

Como conclusión, decir que este enfoque no es solo aplicable a problemas de negocio sino

también a la resolución de problemas técnicos. Por ejemplo, los nuevos retos que ofrece la

programación de aplicativos web de escritorio requieren un enfoque más abstracto que integre

todas las tecnologías: HTML, CSS, JavaScrpit, AJAX y otros.

- 5 -

4. Buenas Prácticas en la Generación de Código

El error más común cuando generamos código es verlo como una caja negra, pensando

que lo importante es “lo que hace” y no “cómo lo hace”. Esto es un error. Como

siempre, la calidad importa.

Estas son algunas de las características que un buen código generado debería tener:

 Independiente: el código manual y el generado deben estar en archivos

diferentes, de lo contrario se corre el riesgo de perder el primero en el caso de

que tengamos que volver a generar el código (y sucederá).

 Inmutable: no se debe cambiar, por dos razones: es peligroso, por ser

desconocido, y por la misma razón que en el caso anterior.

 Legible: eso significa: nombres de variables y funciones significativos,

comentarios, sangría, organizados en carpetas, archivos, etc. El código generado

debe estar presentable para recibir la visita de los desarrolladores: para saber

cómo funciona y ¿por qué no?, para aprender de él. Debemos generar un

código del que sentirnos orgullosos.

 Extensible: por diferentes razones es posible que tenga que implementar

manualmente algunas funcionalidades, por lo que el código generado debe dejar

algunas puertas abiertas. La mejor manera es diseñar el código generado

como un Framework, donde el código manual puede extender sólo algunas

funcionalidades permitidas y en un entorno seguro.

 Estructurada: elevar el nivel de abstracción requiere un buen conocimiento del

campo que se está tratando. Un código mal estructurado puede ser un síntoma de

que ese campo no está completamente bajo control. Una buena generación de

código requiere un buen arquitecto.

 Robusto: el código generado puede fallar, por supuesto. El control de errores, la

gestión de excepciones, la validación de las entradas, validaciones internas, etc

deben ir siempre incluidas en el código. Este tipo de políticas de seguridad se

pueden implementar fácilmente en la generación de código y debe ser una de las

razones de su calidad.

 Potente: una vez dicho lo anterior, deberíamos ver la generación de código como

una forma de escribir un código más potente, eso significa pensar en estrategias,

en el código generado, que nunca usaríamos si lo hiciéramos a mano (por lo

general por razones de mantenimiento).

- 6 -

En resumen, las buenas prácticas en la generación de código son una mezcla de

las buenas prácticas tradicionales y una forma más amplia de pensar.

- 7 -

5. 10 Ventajas de la Generación de Código

Vayamos al grano. He aquí la lista:

 Calidad SW: En todos los aspectos: rendimiento, fiabilidad, seguridad, etc.

 Estandarización: no sólo en el código fuente: en la interfaz de usuario, en las

estructuras de base de datos, etc.

 Centralización: políticas globales tales como el manejo de errores, la gestión de

excepciones, el formato de visualización de datos, las validaciones de datos,

comprobar los permisos, etc. están centralizados en el generador. Este tipo de

políticas son también conocidos como funcionalidades transversales y es un tema

abordado por la Programación Orientada a Aspectos (AOP en inglés) en la

programación tradicional. La centralización evita este problema.

 Refactorización: relacionado con el beneficio anterior, la refactorización de

código es fácil y segura.

 Productividad: Menor coste y menor tiempo de lanzamiento al

mercado (entre versiones).

 Habilidades Analíticas: la generación de código requiere un análisis más

profundo del dominio antes de implementar la solución a través del generador.

 Habilidades de Diseño: requiere un buen arquitecto, con una visión más amplia.

 Crecimiento Sano: previene la degradación de la arquitectura.

 Integración de Nuevos Miembros: la cultura o las normas de desarrollo son

menores cuando se trabaja con generación de código.

 Nivel de abstracción: la programación a un nivel más abstracto, además de fácil

de entender (es más intencional), abre la puerta a nuevas posibilidades, tales

como: generación de pruebas unitarias, auto-documentación, carga automática de

datos, semántica, racionamiento automático, etc.

La generación de código no es fácil, la implementación de un generador requiere de

tiempo y esfuerzo, y más aún si se trata de un Language Workbench, pero, sin duda,

los beneficios son enormes.

- 8 -

6. DSLs

Los lenguajes específicos de dominio (Domain-Specific Languages – DSLs) son

lenguajes de programación diseñados para definir, de una manera más precisa y

expresiva, áreas particulares, bien sean técnicas o de negocio.

Se denominan así en contraposición a los lenguajes de propósito general (General

Purpose Languages – GPLs – Java, C#, C++, etc), ofreciendo un enfoque menos amplio

pero más preciso, es decir, su objetivo es cubrir únicamente el área o dominio para

el que se diseñan pero hacerlo con las estructuras gramaticales y/o abstracciones

gráficas que mejor le definen.

Para entender estos lenguajes vamos a verlos desde dos puntos de vista: como una

evolución a partir de la generación de código y como una evolución desde los GPLs.

DSLs desde la generación de código

Existen diferentes formas, más o menos sofisticadas, para generar código: macros,

datos estructurados en tablas, generación dinámica, parseo de estructuras simples,

modelados tipo CASE, etc, pero siempre que hablemos de un nivel elevado hablaremos

de lenguajes (de tipo texto o gráfico), donde se define de manera formal las estructuras

lingüísticas, su representación y su interpretación.

De este modo, entendemos que los DSLs son la vía más sofisticada en la

generación de código.

DSLs desde los GPLs

Los GPLs son potentes porque permiten definir todos los problemas (Turing completo)

pero en muchos casos son expresivamente pobres debido al salto entre la definición

del problema (mundo real) y su solución (código fuente). Esto hace muy complicada

la programación y el mantenimiento porque se hace difícil entender lo que se pretende

solucionar. Pongamos por ejemplo la definición de una interfaz de usuario web y su

representación en HTML: el salto expresivo es enorme.

En base a esta necesidad surgen los DSLs.

Características y ventajas de los DSLs

 Mayor nivel de abstracción. Definen conceptos más complejos, más abstractos

y por tanto más expresivos.

- 9 -

 Tienen menos grados de libertad. Normalmente no son Turing completos.

Permiten definir el dominio, nada más que el dominio y con las reglas que rigen el

dominio, lo cual les dota de una enorme potencia (en ese dominio, claro).

 Aumentan la productividad ya que permiten programar de una manera más

rápida y eficiente.

 Mejoran la calidad del software. Abstraen de la complejidad técnica,

generalmente resuelta por el generador de código, evitando errores.

 Soporte IDE (entorno de desarrollo integrado). Validaciones, comprobación de

tipos, autocompletar, etc. Esto es una gran diferencia respecto a la definición del

dominio mediante APIs o Frameworks.

 Independientes de la plataforma.

 En general todos las ventajas de la generación de código.

Los DSLs son comunes en el mundo real, a lo largo de la historia han sido creados en

matemáticas, ciencia, medicina… es el momento de usarlos en el desarrollo de

software.

- 10 -

7. Language Workbech

En anteriores publicaciones vimos lo que son los DSLs y por qué son necesarios y útiles

en el desarrollo de software. Una vez que decidimos apoyarnos en ellos, nos

encontramos ante la necesidad de una herramienta que nos permitan diseñarlos y

utilizarlos. Esta herramienta se denomina técnicamente Language Workbench (LW).

Un LW está formado por dos partes fundamentales:

 Diseño del lenguaje.

 Uso del lenguaje. Programación.

Es posible que en el futuro la herramienta se divida en dos, de tal manera que, dentro o

fuera de una organización, existirán dos roles perfectamente diferenciados: quienes

diseñen el lenguaje y quienes se encarguen de utilizarlo, de programar en él.

Diseño del lenguaje

Un LW debe ser capaz de proveer las utilidades para definir las diferentes partes que

forman el lenguaje:

 Sintaxis abstracta. La estructura gramatical/conceptual que define el lenguaje.

Puede ser entendido también como el meta-modelo.

 Sintaxis concreta. La representación o representaciones visuales de dichos

conceptos. Pueden ser representaciones en formato texto y/o gráfico. Para

entendernos, es la definición de la interfaz visual con la que trabajará el

programador.

 Semántica estática. Define aquellas restricciones o reglas que el lenguaje debe

cumplir (aparte de ser sintácticamente correcto).

 Semántica dinámica. Sería sobre todo la traducción a lenguajes tradicionales

aunque, como mencionaremos luego, aquí se encuentra el mayor potencial de

esta metodología de desarrollo.

Uso del lenguaje

Una vez definidos los puntos anteriores, la herramienta es capaz de interpretarlos y

proveernos de un entorno de desarrollo (IDE). Según sea más o menos sofisticado, a

parte de la edición, nos podrá proveer de utilidades como: autocompletar, validaciones

estáticas, resaltar elementos sintácticos, mostrar diferentes vistas e incluso debug.

- 11 -

A parte de las características anteriores, este entorno nos permitirá generar código e

incluso podrá dotarnos de un proceso de building para obtener el aplicativo final.

Potencial futuro

Todo lo comentado hasta ahora nos permite tener un proceso de desarrollo análogo al

tradicional pero con las ventajas que ofrecen los DSLs y la generación de código, lo cual

es un enorme avance en el que se apoyan los defensores e investigadores de esta

metodología.

Estando de acuerdo en lo anterior, para nosotros el verdadero potencial, aun por

descubrir, es el hecho de que la programación deja de ser una mera declaración

funcional y pasa a ser una representación del conocimiento. Una vez que definimos

los conceptos y sus reglas, la semántica puede ser capaz de ofrecernos muchos más

servicios que la simple generación de código.

- 12 -

8. Representación del Conocimiento y Automatización de

Software

La representación del conocimiento es una disciplina que persigue la representación

de la información del mundo real de una manera que pueda ser interpretada por

las máquinas para resolver, mediante inferencia, problemas complejos.

Tradicionalmente ha sido una disciplina de la inteligencia artificial y últimamente ha

adquirido gran relevancia por su utilización en el ámbito de la semántica. El

proyecto de la Web Semántica, liderado por la W3C, es un claro ejemplo de ello.

Aunque existen muchos enfoques para la representación del conocimiento,

comúnmente todos persiguen: definir los conceptos, las relaciones y las reglas que

definen la información. Mediante los diferentes conceptos podemos clasificar la

información y mediante las relaciones y reglas podemos inferir (razonar) sobre ella.

Por lo tanto, en vez de tener información “plana” tendremos además una meta-

información que nos permitiría procesarla.

Desde la perspectiva de los lenguajes

En anteriores publicaciones vimos como los Language Workbenches definen los

lenguajes mediante las sintaxis abstracta y concreta y las semánticas estáticas y

dinámicas. Si nos damos cuenta esa definición sería la meta-información que hace

que un programa sea una representación del conocimiento y que, por tanto,

podemos utilizar todo el potencial que esta disciplina nos aporta.

Se suele pensar en los Language Workbenches como generadores de código pero,

enfocados desde el punto de vista de la representación del conocimiento y de la

semántica, pueden ofrecernos muchos más servicios. Enumeramos algunos:

 Generar baterías de pruebas.

 Generar cargas iniciales de datos. Relleno de estructuras de bbdd para pruebas

de rendimiento.

 Auto-documentación.

 Auto-validación.

 Análisis estadísticos de los datos y de los programas.

 Inferir comportamiento de los usuarios, clientes, etc.

 Facilitar la importación y exportación de datos. Por ejemplo XBRL: lenguaje de

presentación de informes de negocio extensible.

http://www.w3.org/standards/semanticweb/
http://www.w3.org/
http://www.xbrl.org/

- 13 -

 Enlazar con ontologías estándar. Por ejemplo FIBO: ontología del negocio

financiero.

 Facilitar la integración con otros sistemas.

 Razonamiento automático (machine reasoning).

Conclusión

La representación del conocimiento

esta siendo un área de investigación

enfocada sobre todo en el tratamiento

de los datos: estructurar la información

de los buscadores, análisis semánticos

aplicados al Big Data, definiciones de

ontologías asociadas a diferentes negocios, etc.

Construir metodologías de desarrollo que doten a los programas de esas

capacidades es una puerta hacia el futuro con potenciales aun por descubrir.

http://www.omg.org/hot-topics/fibo.htm

- 14 -

9. Diseñadores de Lenguajes

Una vez que disponemos de una herramienta para diseñar lenguajes de forma ágil,

viene la tarea más difícil: diseñarlos.

El diseño de un buen lenguaje es la parte principal del proceso ya que será la

herramienta de los desarrolladores y lo que va a albergar la inteligencia semántica

del sistema.

Asimismo, dado que los conceptos que estructuran el lenguaje forman en sí mismo el

modelo, antes de diseñarlo es necesario conocer bien el dominio que se quiere

modelar.

Características de un buen lenguaje

 Alto nivel de abstracción. Mientras mayor sea el nivel, más potente será el

lenguaje y mayor carga semántica tendrán sus conceptos. Asimismo, un alto

nivel de abstracción denota un alto conocimiento del dominio que se modela.

 Simple. Debe ser fácil de utilizar y de leer. Un lenguaje simple suele ser

sinónimo de un alto nivel de abstracción.

 Diferentes niveles de complejidad. A la vez que debe ser simple, también debe

permitir vías para profundizar en el detalle por parte de aquellos que lo necesiten.

 Estética agradable.

 Semánticamente potente. Para que un lenguaje sea productivo simplemente es

necesario dotar a los conceptos de su representación gráfica y su traducción a

lenguajes tradicionales, pero si queremos que realmente sea completo, debemos

dotar a los conceptos de más interpretaciones semánticas: auto documentación,

auto validación, reglas de inferencia, etc.

Requisitos de un buen diseñador

A partir de las características de un buen lenguaje podemos inducir los requisitos:

 Orientación a negocio. Conocer bien el dominio para diseñar el lenguaje

requiere un alto interés por conocer todos los procesos que lo rigen.

 Capacidad de abstracción. Conocido el dominio, se requiere una capacidad

analítica que permita identificar, con el mayor nivel de abstracción posible, su más

pura esencia.

- 15 -

 Enfoque hacia la semántica. El lenguaje ha de diseñarse con el objetivo de

dotarle de una alta capacidad de representar el conocimiento.

 Cualidades enfocadas a la simpleza y la estética.

Conclusión

Este nuevo paradigma de desarrollo requiere un perfil particular para diseñar los

lenguajes, donde no solo son importantes las antiguas cualidades analíticas sino que

se han de añadir cualidades de usabilidad y de representación del conocimiento.

Inicialmente puede parecer complejo pero al fin y al cabo forma parte de la evolución

de la tecnología, donde los perfiles que más aportan son aquellos que tienen mayor

capacidad de abstracción.

- 16 -

10. Frameworks: la Media Naranja de la Generación de

Código

Podemos definir un Framework (FW) como una estructura software con

funcionalidades genéricas las cuales pueden ser adaptadas o enriquecidas para

obtener un aplicativo final.

Comúnmente pueden ser confundidos con las librerías, pero se trata de un enfoque

totalmente diferente. He aquí las principales características que definen esta diferencia:

 La inversión de control. El flujo de control lo define el FW y no el aplicativo que

usa sus servicios. Esto también es conocido como el principio de Hollywood:

“no nos llames, nosotros te llamaremos”.

 Extensibilidad. Algunas funcionalidades del FW no están “cerradas” como

sucede en las librerías, al contrario están diseñadas para ser particularizadas

según el problema particular que deban resolver.

 Comportamiento predeterminado. los FWs poseen un comportamiento global

predeterminado, comportamiento que define el flujo de control. Como se ha visto

antes, la extensión es lo que permite adaptar el comportamiento global al

problema particular que cada aplicativo requiera.

Los frameworks son la base de las arquitecturas plug-in y de los sistemas enfocados

a ecosistemas de desarrollo (facebook, twitter, amazon…), pero sobretodo son la

arquitectura perfecta para hacer de base al código generado.

Técnicamente, dependiendo del lenguaje de programación que usemos, habrá varias

formas de implementarlo. En lenguajes que lo permitan lo mejor es apoyarse en clases

abstractas, clases parciales, delegados y tipos genéricos. En caso contrario se

pueden usar otras estrategias como: intérpretes, funciones intermedias, tipo patrón

visitor, que resuelvan la llamada y otros.

Ventajas en la generación de código

Estas son las características que aconsejan su uso:

 Extensible. Permiten realizar el trabajo en dos partes, lo cual facilita la definición

del generador de código.

 Estructurado. Diseñar por un lado la parte genérica y en el generador la

particular, permite tener una arquitectura mejor estructurada.

- 17 -

 Seguridad. Permite tener físicamente separados el código manual y el código

generado, lo cual evita perdidas de código.

 Reutilizable. Una vez definido un FW podemos utilizarle en diferentes proyectos,

facilitando nuevamente el desarrollo del generador.

 Legibilidad. La separación de lo genérico y lo particular facilita el entendimiento

del código.

Conclusión

Cuando se aborda la generación de código se suele pensar que se va a generar el

sistema al 100%. Una vez que se profundiza en ello se ve que es complejo además de

ser un error de diseño y una distribución de trabajo desequilibrada.

Para conseguir un buen diseño arquitectónico y una buena distribución del trabajo los

frameworks se muestran como la media naranja ideal para nuestro sistemas

generados.

Por último, es aconsejable que el código generado tenga también una estructura

de framework, esto nos permite poder implementar aquellas particularidades que no

convenga automatizar y a su vez permite que nuestros sistemas puedan ser extendidos

por un ecosistema de desarrolladores

- 18 -

11. Automatización: Proceso Completo

A lo largo de diferentes artículos hemos ido viendo el conjunto de elementos que forman

la metodología, compilamos en éste todo el proceso.

Generación de código

A través del Language Workbench, una vez definidos los lenguajes (DSLs), realizamos

el proceso de programación. Y a medida que vayamos avanzando iremos generando

código para compilarlo y ver el resultado en el aplicativo final.

Siempre que utilicemos lenguajes que soportan clases parciales, clases abstractas,

tipos genéricos, delegados, etc., podemos generar el código sin peligro ya que lo

haremos en ficheros separados, sin riesgo de pisar código manual o de FWs. En caso

contrario deberemos utilizar otro tipo de estrategias para evitar que esto ocurra.

Fusión con Frameworks

Como en el caso anterior, dependiendo de los lenguajes finales que utilicemos, la fusión

será más o menos simple. En el caso de lenguajes que soporten FWs (clases

abstractas, parciales, etc) no se requiere tal fusión porque lo soluciona la propia

sintaxis del lenguaje.

En otro tipo de lenguajes habrá que ajustar alguna funcionalidad o algún fichero

de configuración, lo cual podrá ser también automatizado por el propio LW.

Extensiones manuales

En la mayoría de los casos existirán ciertas funcionalidades que no conviene

automatizar, de lo contrario complicaríamos nuestros DSLs perdiendo, por tanto, parte

de su potencia.

Lo ideal sería definir, en la propia herramienta, esos lenguajes de extensión teniendo

integrado todo el desarrollo en la herramienta. En caso contrario podremos programar

estas extensiones en el propio lenguaje final en el que generamos el código.

- 19 -

Si añadimos las extensiones en el lenguaje final, nuevamente será interesante

buscar un enfoque de FWs, esto es, hacer que el propio código generado tenga una

estructura extensible y así podamos tener las partes manuales en ficheros diferentes,

evitando el riesgo de pérdida o substitución.

Componentes del servidor web

Building

Una vez que tenemos todo el código: FWs, generado, extensiones manuales, ficheros

de configuración y otros, un proceso automático se encargará de su fusión, si fuera

necesario, de su compilación y de su publicación.

Dependiendo del sistema operativo tendremos diferentes herramientas para hacerlo,

aunque lo más común en todos ellos es usar ficheros de instrucciones batch que

realiza todos los pasos del proceso.

Para concluir indicar que hemos detallado el proceso tal y como se encuentra en este

momento, pero cabe resaltar que es una tecnología en constante evolución y que

persigue integrar todo el proceso en el propio LW: lenguajes, debug, fusión,

building, etc.

http://bheudek.files.wordpress.com/2013/06/webfw3.png

- 20 -

APPENDIX I – GLOSARIO

AOP

Aspect-oriented programming. La programación orientada a aspectos es un

paradigma de programación que permite la separación de aspectos trasversales.

Aspectos diferentes, tales como seguridad, log contable, avisos, etc. pueden ser

definidos en áreas diferentes, obteniéndose el comportamiento final del sistema

mediante a través de un proceso de tejido.

Dominio

Un dominio es un área, de negocio en nuestro caso, en el cual reside un

conocimiento particular y una terminología específica para definirlo.

DSL

Domain Specific Language. Un lenguaje específico de dominio es un lenguaje de

programación diseñado para representar los conceptos de un dominio dado.

Puede ser tanto gráfico como texto.

FW

Framework. Un framework es una plataforma software reutilizable para

desarrollar aplicaciones. Se trata de una abstracción donde sus funcionalidades

genéricas pueden ser extendidas de manera selectiva para conseguir un

aplicación software específica.

FM

Feature Model. Modelo para representar las partes comunes y opcionales que

puede haber en una línea de producción. Es utilizado en PLE.

LW

Language Workbench. Herramienta que permite la definición y uso de lenguajes

formales: sintaxis abstracta y concreta y semántica estática y dinámica. Se

podría considerar como una herramienta para definir el lenguaje, el compilador y

el IDE de un determinado dominio.

MDA

- 21 -

Model Driven Architecture. Estándar OMG para el desarrollo de software basado

en modelos. Se puede considerar como un caso particular de MDSD.

MDSD

Model-driven Software Development. Se trata de un paaradigma de

programación que basa el desarrollo de software a nivel de modelos.

Meta-modelo

Reglas, construcciones, relaciones, etc. que definen los modelos que pueden ser

construidos en un dominio determinado.

PLE

Product Line Engineering. Disciplina para la creación de software a través de

líneas de producción de software (SPL).

SPL

Software Product Lines. Metodología de desarrollo enfocada en la producción de

software tal y como se hace en la producción de otros bienes: compartiendo los

procesos comunes y aislando los particulares.

- 22 -

APPENDIX II – APLICACIONES WEB DE ESCRITORIO

Más allá de la publicidad o la identidad digital, las empresas cada vez más ven en la

web la vía para mejorar su productividad y servicios: objetivos como descentralizar la

gestión (back offices) o dotar a los clientes de una actividad directa online son

ejemplos de ello.

Aunque la web no fue diseñada en origen para una interacción dinámica y

bidireccional, la aparición de nuevas las tecnologías y la mejora en los

navegadores, nos permiten diseñar aplicaciones cada vez más cercanas a las

tradicionales aplicaciones de escritorio.

Estas aplicaciones web de escritorio son diferentes a las páginas web y a los

aplicaciones web (e-commerce, por ejemplo), porque se enfocan a usuarios que

necesitan una interacción continua, prolongada y ágil. Pongamos como ejemplo

cualquier usuario de call center: atención al cliente, servicio técnico, gestión de

recobros, etc.

Requisitos de una aplicación web de escritorio

 Teclado. Es indispensable que la aplicación pueda ser gobernada por el teclado y

no solamente por el ratón. Tabulador, intro, flechas, etc.

 Velocidad. No solo por motivos de comodidad sino de productividad.

 Seguridad. Los datos con los que tratan estas aplicaciones son muy sensibles.

 Sin efecto parpadeo. La carga de contenido ha de ser parcial y dinámica, el

refresco continuo de toda la página produce un efecto incómodo e insano.

 Estética agradable y estándar. Debe ser limpia y nunca recargada.

Consejos para conseguirlo

 Patrón SPA (Single Page Application). Se trata de un patrón de página web única

donde los contenidos se van cargando dinámicamente. Permite políticas como

carga inicial de ficheros (js, css, imágenes, etc), control de sesión compartido,

mayor procesamiento en el cliente, etc.

 Interfaz estándar en todo el aplicativo. Las pantallas, los botones, las pestañas,

los grids de datos y demás controles han de tener un aspecto y operativa común a

lo largo del aplicativo.

- 23 -

 Framework JavaScrtipt. Necesario para estandarizar la interfaz y dotarla de los

servicios para gestionar los controles y ventanas. Por motivos de seguridad y

adaptabilidad se aconseja que sea desarrollo propio y encapsulado en un único

objeto.

 Control de eventos de teclado. El framework debe implementarlos y asociarlos a

los controles.

 AJAX. La vía para el dinamismo.

 Minimizar uso de la red. El trasiego de datos debe ser el mínimo, aunque eso

suponga mayor procesamiento en el lado del cliente. Estándares de intercambio

como JSON son aconsejables.

 Pantallas modales. Mejoran la experiencia de usuario y el dinamismo del

aplicativo.

 Uso de imágenes sprites. Permiten cargar todas las imágenes de la aplicación al

principio.

Un desarrollo automatizado de la interfaz de usuario apoyada en un framework js

potente es el mejor camino para cumplir los objetivos anteriores.

Conclusión

Cuando hablamos de apps de

escritorio hablamos de aplicaciones

con unos requisitos muy exigentes

ya que son la herramienta de

trabajo en la que los usuarios

pasarán gran parte de su tiempo.

Podrán seguir apareciendo nuevos

dispositivos y nuevas maneras de

interactuar con los sistemas, pero cuando hablamos de interacción, requisitos

tradicionales como el teclado, la velocidad, la seguridad y la ergonomía se hacen

imprescindibles.

https://esbheudek.files.wordpress.com/2014/07/modal.png

- 24 -

APPENDIX III – PRIMER PRODUCTO: BHEUDEK FINANCE

Con el fin de acudir al mercado y poner a prueba nuestras herramientas, hemos

desarrollado nuestro primer producto: un servicer financiero.

Basándonos en nuestra experiencia en proyectos similares podemos afirmar que, con

nuestras herramientas, ¡Hemos reducido el tiempo total del proyecto en un 75%!,

mejorando no solo el tiempo de desarrollo sino también el de test y refactorización.

Menú principal.

Características Funcionales

Como servicer financiero, estas son las funcionalidades principales de la aplicación:

 Migración de carteras.

 Gestión de clientes.

 Gestión de entidades, familias de productos y acuerdos.

 Ciclo de vida complete del préstamo: remesas, impagos, pagos parciales,

recobros, fallido, etc.

 Gestation de recobros: amistoso, judicial y agencias externas.

 Mayor.

 Contabilidad.

 Gestión de usuarios, roles, permisos y ámbitos.

 Configuración: bancos, juzgados, simulación de préstamos, etc.

De manera más general queremos destacar estas características:

- 25 -

Multi-Ambito:similar a multi-compañia pero en diferentes niveles. La parametrización y

la visión del usuario se pueden encuadrar a grupos de carteras, de compañías, de

inversores, etc.

Página de gestión de usuario: selección de ámbito.

Estanqueidad: cada cartera se comporta a lo largo de la aplicación como un elemento

aislado, sin existir filtraciones de datos o de procesos entre ellas.

Rastreable: se puede seguir el curso de cada entrada de dinero en el sistema.

Integrado: toda la gestión se integra en una única aplicación y a su vez, procesos que

tradicionalmente eran independientes, han sido integrados en uno solo.

Proceso de recobros unificado: amistoso y judicial.

- 26 -

Caracteristicas Técnicas

Se trata de aplicación web HTML5 basada en el patrón SPA (Aplicación de página

única), lo que significa: carga dinámica de páginas sin el efecto blinking. Esta potente

característica se consigue gracias a la velocidad de procesamiento de peticiones que

ofrece el código generado.

Una de sus características más importantes es que puede ser considerada como una

Aplicación Web de Escritorio. Este tipo de aplicaciones web son aplicaciones

tradicionales de escritorio pero con una interface web. Estas aplicaciones son diferentes

a las páginas web y a los aplicaciones web (e-commerce, por ejemplo), porque se

enfocan a usuarios que necesitan una interacción continua, prolongada y ágil.

Pongamos como ejemplo cualquier usuario de call center: atención al cliente, servicio

técnico, gestión de recobros, etc.

Ejemplo 1 Carga dinámica de la página

Estas son las características principales de una Aplicación Web de Escritorio:

 Teclado. Es indispensable que la aplicación pueda ser gobernada por el teclado y

no solamente por el ratón. Tabulador, intro, flechas, etc.

 Velocidad. No solo por motivos de comodidad sino de productividad.

 Seguridad. Los datos con los que tratan estas aplicaciones son muy sensibles.

 Sin efecto parpadeo. La carga de contenido ha de ser parcial y dinámica, el

refresco continuo de toda la página produce un efecto incómodo e insano.

 Pantallas modales. Mejoran la experiencia de usuario y el dinamismo del

aplicativo.

 Estética agradable y estándar. Debe ser limpia y nunca recargada.

- 27 -

Ejemplo 2 – Ventana modal

Otra característica fundamental de la aplicación es la seguridad, la cual viene

soportada por tener un único Framework JS y estar encapsulado en un único objeto y

por las políticas de seguridad del servidor: sesión de testigo dinámico, validación de

peticiones, validación de datos, permisos, etc. Este tipo de políticas globales que se

implementan a lo largo de toda la aplicación se denominan cross-cutting concerns y son

resueltas y garantizadas por el código generado.

- 28 -

APPENDIX IV – Beneficios de la Automatización del
Software en el FinTech

El sector financiero se encuentra ante su mayor reto tecnológico: el
fenómeno FinTech. Afrontar esta cambio, que implica a muchas áreas y
tecnologías, requiere un enfoque global para evitar el caos operativo y
tecnológico.
Ante este escenario, la automatización se presenta como la solución
unificada que requiere el problema. Características como la semántica y la
automatizacion de procesos ofrecen ventajas a los cambios que se
abordarán en las diferentes áreas: servicios de negocio, servicios online y
gestión de datos.

El sector financiero se halla sumergido en un proceso de renovación tecnológica. Las

oportunidades que ofrecen las nuevas tecnologías y la irrupción de nuevos

actores, muchos de ellos provenientes de otros sectores (Google, Amazon, Apple..),

han obligado al sector a mover ficha.

El fenómeno FinTech está planteando actuaciones en áreas muy diversas y con

tecnologías muy diversas, lo cual nos lleva a un escenario complejo donde se hace

necesario que el problema sea abordado desde una perspectiva global, de lo

contrario se corre el riesgo de entrar en un caos operativo y tecnológico.

Ante esta situación, las nuevas técnicas en la automatización del software se plantean

como la mejor vía para afrontar este cambio.

La automatización del software eleva la solución técnica

al nivel conceptual en el que opera el negocio. Este punto

de vista más elevado es el que permite dar un enfoque

más global y unificado al reto que plantea el FinTech.

Desde una visión más técnica, la automatización del software se apoya en la creación

de lenguajes de programación más abstractos que permiten automatizar los detalles

técnicos y dotar al sistema de una mayor riqueza semántica. En ámbitos técnicos, estos

lenguajes se denominan DSLs y las herramientas para gestionarlos Language

Workbench.

http://bheudek.es/2014/06/25/dsls/
http://bheudek.es/2014/06/30/language-workbench/
http://bheudek.es/2014/06/30/language-workbench/

- 29 -

Ventajas

1.Automatización de procesos.

Trabajar en un nivel más abstracto permite automatizar procesos técnicos pero también

a procesos tradicionales de negocio. Motores de decisión, ofertas basadas en riesgo,

predicción de fallidos y detección del fraude son ejemplos de procesos que pueden

verse mejorados bajo la perspectiva de la automatización.

2.Semántica.

La nueva forma de definir los lenguajes de programación, a partir de los conceptos que

los estructuran, abre las puertas a laRepresentación del Conocimiento. Esta disciplina,

tradicionalmente de la inteligencia artificial, se aplica cada vez más al tratamiento de

datos (visualización, búsqueda, análisis, toma de decisiones …) y en el futuro será

fundamental en cualquier proceso de análisis y de interacción, bien con clientes, bien

con otros sistemas. XBRL (lenguaje de presentación de informes de negocio extensible)

y FIBO (ontología del negocio financiero) son ejemplos de aplicación de la semántica en

el sector financiaro.

3.Menor complejidad técnica.

Nuevamente, el mayor nivel de abstracción de los lenguajes nos permite resolver, de

manera automática, gran parte de los detalles técnicos que requieren las diferentes

soluciones. Conseguir automatizar esta complejidad redunda en la calidad, seguridad,

estandarización y otras características del software.

4.Multi-plataforma.

Una vez que tenemos el dominio de los lenguajes de programación, un mismo

desarrollo puede traducirse a múltiples plataformas, sin necesidad de tener que llevar a

cabo un nuevo proyecto para cada nuevo dispositivo.

5.Orientación a negocio.

Los lenguajes de programación se hacen más cercanos al negocio, lo cual permite a los

desarrolladores enfocarse en dar una solución desde el punto de vista propiamente del

negocio y no desde una perspectiva técnica. A su vez esto derriba la barrera que ha

existido siempre entre las áreas de desarrollo y el resto de áreas de la empresa.

http://bheudek.es/2014/07/03/representacion-del-conocimiento/
http://www.xbrl.org/
http://www.omg.org/hot-topics/fibo.htm

- 30 -

Áreas beneficiadas

El FinTech actúa en múltiples áreas en las que la automatización puede aportar sus

ventajas. Las agrupamos en tres bloque principales: servicios de negocio, servicios

online y gestión de datos.

1.Servicios de negocio.

La demanda de nuevos servicios por parte del cliente y la búsqueda de mejoras en la

productividad, está llevando al sector a actuar sobre sus estructuras más tradicionales.

Los puntos en los que la automatización aporta ventajas son:

Descentralización. Para poder llevar a cabo la descentralización de servicios (call

centers, back office, etc), es necesario migrar hacia el entorno web, lo cual resulta

un reto importante porque los sistemas deben mantener las características de

seguridad, velocidad y manejabilidad de las aplicaciones de escritorio

tradicionales. La automatización nos permite crear, de manera

eficiente, Aplicativos Web de Escritorio.

Gestión del portfolio. La automatización de procesos tradicionales nos permite

una gestión más optimizada. Por otro lado, la semántica nos permite la gestión

unificada de portfolios heterogéneos y la integración de portfolios externos.

Compliance. La semántica, junto con el uso de lenguajes orientados a negocio,

facilitan los procesos de análisis y documentación de auditoría. A su vez, la

automatización de procesos es la mejor vía para solucionar problemas de

compliance.

Sistemas heredados (legacy). El mayor nivel de abstracción de los lenguajes nos

permite diseñar, de manera simple, interfaces con los sistemas ya existentes.

2.Servicios online.

La aparición de nuevos dispositivos, la mejora en las comunicaciones y la nueva cultura

digital han hecho que las entidades abran sus puertas para permitir una gestión más

directa por parte de sus clientes. Nuevamente la automatización ofrece beneficios en

éste área:

Accesibilidad. La multi-plataforma permite multiplicar las vías de acceso de los

clientes a sus datos.

http://bheudek.es/2014/07/24/aplicativos-web-de-escritorio/

- 31 -

Promover la educación financiera. La semántica dota a los sistemas de unas

capacidades de visualización y documentación que facilitan su manejo y

entendimiento.

Gestión personal. Como resultado de las puntos anteriores, el cliente pasa a

tener una gestión más personal de sus datos y sus activos. Como hemos dicho, la

semántica juega un papel fundamental en la interacción con el cliente.

New Banking. Multi-plataforma, semántica y automatización de procesos

permiten nuevas líneas de negocio como: ofertas personalizadas, plataformas de

pago, cripto-monedas, análisis proactivos de riesgo y otros.

3.Gestión de datos.

La interacción más directa con el cliente y los nuevos metodologías para procesar esa

informacion han revolucionado el tratamiento de los datos y las tradicionales técnicas de

CRM. En este último apartado la automatización también ofrece ventajas:

Automatización del back office. La automatización del back office pasa por la

automatización de su workflow. Las posibilidades que ofrece la semántica en el

diseño de motores de decisión más “inteligentes”, junto con la automatización de

procesos, son líneas fundamentales para conseguir este objetivo.

Reporting. En general el reporting cada vez más tiende a la semántica, un

ejemplo de ello es XBRL.

Seguridad. La automatización de procesos permite un tratamiento más seguro de

los datos.

Big Data. Podemos resumir, ya que este punto requeriría un artículo entero, que

la semántica, la automatización de procesos y un mayor nivel de abstracción nos

permiten, por un lado, manejar la variabilidad de los datos y por otro, mitigar los

riesgos que supone la desestructuración asociada al Big Data .

- 32 -

Conclusión

El sector financiero se encuentra ante uno de los retos tecnológicos más grandes de

toda su historia, reto en el que se ven afectadas múltiples áreas y tecnologías.

La automatización del software aporta el enfoque general y unificado que requiere

este escenario, de lo contrario, las actuaciones individualizadas pueden llevar a las

compañías a un panorama tecnológico difícilmente gobernable.

http://esbheudek.files.wordpress.com/2014/07/esautfintech1.png
http://esbheudek.files.wordpress.com/2014/07/esautfintech1.png
http://esbheudek.files.wordpress.com/2014/07/esautfintech1.png

